于征磊:男,吉林省长春市人,工学博士,副院长,唐敖庆学者领军教授、博士生导师,入选吉林省高层次人才,吉林省中青年科技创新创业卓越人才,先后入选吉林大学优秀青年教师培养计划精英阶段和重点阶段。
承担国家级、省部级项目20余项,包括主持国家自然科学基金(面上2项,青年1项)、GF项目(3项)、国家重点研发计划子课题(3项)、省科技发展计划(3项)、省发改委科技攻关等;并参研多项企业课题,与一汽红旗、一汽大众、一汽模具、一汽解放、长客、中汽中心(天津)等国有企业保持长期合作关系。以第一/通讯作者发表SCI/EI检索论文90余篇,中科院一区30余篇;一作授权国家发明专利35项,授权美国发明专利4项,软件著作权4项;一作编著书籍2部,参编1部;获得省部级奖励5项。
Email:zlyu@jlu.edu.cn
地址:长春市人民大街5988号,吉林大学南岭校区仿生楼610室
电话:0431-85095760-610 手机:18644923702
硕士研究生招生专业:农业机械化工程、机械(专硕)
博士研究生招生专业:仿生科学与工程、机械(工程博士)
欢迎力学、机械、汽车、仿生、农机、材料、生物、光电、控制等相关专业的学生报考。
一、研究方向
1、仿生多功能结构设计:结构轻量化、高强、抗冲击等仿生多功能结构设计与应用研究;
2、多材料增材制造技术研究:金属材料(NiTi、Ti合金、TC4、Al等)增材制造、高分子材料增材制造、异质材料增材制造、医用植入材料增材制造;
3、机构设计及数字化系统开发:汽车碰撞假人、前瞻机械结构设计、热塑碳纤维一体化装备,汽车焊装生产线数字镜影、机器人预防性运维、人机协同等。
二、主要履历
1、2021.10-至今,吉林大学,工程仿生教育部重点实验室,教授(破格)/博导;
2、2019.10-2021.09,吉林大学,工程仿生教育部重点实验室,副教授/博导;
3、2017.10-2019.09,吉林大学,工程仿生教育部重点实验室,副教授/硕导;
4、2015.01-2020.06,吉林大学,工程仿生教育部重点实验室,博士后,合作导师:任露泉 院士;
5、2014.07-2017.09,吉林大学,工程仿生教育部重点实验室,讲师;
6、2011.09-2014.06,吉林大学,机械科学与工程学院,固体力学专业,博士,导师:徐涛 教授;
7、2008.09-2011.06,吉林大学,机械科学与工程学院,固体力学专业,硕士,导师:徐涛 教授;
8、2003.09-2007.06,长春理工大学,理学院,光信息科学与技术专业,学士。
三、社会兼职
国际仿生工程学会(ISBE),会员;
全国仿生学标准化技术委员会(SAC/TC598),委员;
吉林省增材制造学会,理事/副秘书长;
吉林省高等教育学会机械原理专业委员会,副理事长;
吉林省科技创新创业研究会,理事;
《增材制造前沿(英文)》首届青年编委会委员,2023-2025;
《Journal of Bionic Engineering》青年编委会委员,2024-2025。
四、科研成果
4.1 近三年发表论文情况(一作和通讯)
[1] Near-Infrared Triggered Black Phosphorus/Zinc Oxide Nanocoatings Are Used to Resist Bacterial Infections in Additively Manufactured NiTi Alloy Implants. NANO LETTERS, 2025.
[2] Corrosion Resistance and Bacteriostatic Properties of DCPD-PMTMS-CS Coating on Additive Manufacturing Preparation of NiTi Alloy Surface. Langmuir, 2025, 41(26): 16970-16980.
[3] Lightweight bionic structures inspired by lobster claw with dual-functionality: Synergistic sound insulation and mechanical properties. Composite Structures, 2025, 371: 119530.
[4] Improving the superelastic wear resistance of laser powder bed fusing (LPBF) Ni-rich NiTi alloys by mechanical training. Friction, 2025, 13: 9441064.
[5] Bionic Microstructure/Nanofiller Heterogeneous Ultradurable Superhydrophobic Surface Based on Metal Additive Manufacturing. NANO LETTERS, 2025, 25(8): 7533-7542.
[6] The additive manufacturing NiTi alloy surface modification scheme can be used for photothermal treatment and overcoming implant infection. ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8(3): 254.
[7] Comparison of microstructural characteristics, phase transformation and wear behavior of Ni50.8Ti49.2 shape memory alloy fabricated by LPBF versus conventional casting. Intermetallics, 2025, 181: 108694.
[8] Bionic beetle nickel-titanium medical skeleton with excellent deformation recovery ability and mechanical properties. Thin-Walled Structures, 2025, 208: 112817.
[9] Research on the preparation and corrosion resistance of integrated NiTi alloy bionic superhydrophobic corrosion-resistant surface based on additive manufacturing technology. Applied Surface Science, 2025, 685: 162048.
[10] Machine learning in additive manufacturing-NiTi alloy’s transformation behavior, Materials & Design, 2024, 247: 113443.
[11] Superior mechanical properties and corrosion resistance of laser powder bed fusion 7075 Al/TC4 alloy through microstructure design. Journal of Materials Research and Technology, 2024, 33: 4884-4898.
[12] Corrosion and tribocorrosion resistance of superhydrophobic LPBF-NiTi alloys surface fabricated by nanosecond laser and ultrasonic fluorination. Surface and Coatings Technology, 2024, 490: 131176.
[13] The corrosion resistance, biocompatibility and antibacterial properties ofthe silver-doped dicalcium phosphate dihydrate coating on the surface ofthe additively manufactured NiTi alloy. Ceramics International, 2024.
[14] Stress-adaptive femur bionic triple periodic minimal heterostructures manufactured by SLS technology with excellent mechanical properties. Additive Manufacturing, 2024, 93: 104457.
[15] Interpenetrating phases composites Ti6Al4V/Zn as partially degradable biomaterials to improve bone-implant properties. Additive Manufacturing, 2024, 93: 104411.
[16] A multifunctional heterogeneous structure inspired by shell brick-mud structure: Balancing noise reduction and mechanical performance. Composites Science and Technology, 2024, 256: 110765.
[17] Improved corrosion resistance and biocompatibility of magnesium implants by cathode-deposited polypyrrole/dicalcium phosphate dihydrate composite coating. CHEMICAL ENGINEERING JOURNAL, 2024, 487: 150604.
[18] Fault Diagnosis of Industrial Robot Based on Multi-Source Data Fusion and Channel Attention Convolutional Neural Networks. IEEE ACCESS, 2024, 12:82247-82260.
[19] Enhancing the surface finish and corrosion resistance of laser powder bed fusion NiTi surfaces through chemical polishing. Journal of Materials Research and Technology, 2024, 29: 5507-5516.
[20] Graphene oxide/ hydroxyapatite composite coatings on additively manufactured NiTi alloy for biomedical applications [J]. Ceramics International, 2024,50(1), 2479-2489.
[21] Characteristic analysis of bionic-induced structures with negative stiffness inspired by the growth and deformation differences of branches, Thin-Walled Structures, 2024, 196, 111437.
[22] Antibacterial activity of additive manufactured NiTi alloy improved by zinc oxide-doped DCPD-PCL composite coating [J]. Ceramics International, 2024, 50(1), 879-908.
[23] Chunyang Han. Assembling Feather-like Reentrant Structures with Multiple Mechanical Properties Fabricated by Laser Powder Bed Fusion [J]. Composite Structures, 2023, 326, 117599. (中科院1区(top(是)),if:6.603)
[24] Investigation on the mechanical properties and shape memory effect of landing buffer structure based on NiTi alloy printing [J]. Chinese Journal of Mechanical Engineering, 2023, 36: 104.
[25] Study on mechanical properties of polyurethane-enhanced triply periodic minimal composite structures inspired by rachis microstructure. Composites Science and Technology, 2023, 242, 110197.
[26] The corrosion resistance and biomineralization of the DCPD-PCL coating on the surface of the additively manufactured NiTi alloy [J]. Surface and Coatings Technology, 2023, 466: 129653.
[27] Construction and parameter optimization of LPBF-NiTi alloy bionic superhydrophobic surface basedon laser processing [J]. Journal of Materials Research and Technology, 2023, 24: 9462-9475.
[28] Novel femur-like multimodal ultrahigh strength structure with superb freedom based on the improvement strategy of curvature fabricated by additive manufacturing [J]. Materials & Design 231 (2023) 112018.
[29] Mechanical Characteristics Analysis of 3D-printing Novel Chiral Honeycomb Array Structures Based on Functional Principle and Constitutive Relationship. [J]. Journal of Bionic Engineering, 2023, 20(5), 1917-1929.
[30] Achieving illustrious friction and corrosion resistance on a laser powder bed fusion nitinol rare earth alloy. Materials Today Advances, 2023, 17: 100350.
[31] Anti-tribocorrosion resistance of NiTi–CeO2 alloys fabricated by laser powder bed fusion. Composites Communications, 2023, 38: 101512.
[32] A bio-inspired lattice structure design and its application for lightweight design in the support structure of the Fengyun-3 satellite payload. Materials, 2023, 16, 736.
[33] An extremely effciency method to achieve stable superhydrophobicity on the surface of additive manufactured NiTi Alloys: “Ultrasonic Fluorination”. Applied Surface Science, 2023 612: 155947.
[34] Anti-corrosion superhydrophobic surface of LPBF- NiTi alloy fabricated by nanosecond laser machining. Optics & Laser Technology, 2023, 158: 108858.
[35] Study on mechanical properties of lattice structures strengthened by synergistic hierarchical arrangement [J], Composite Structures, 2023, 304(1), 116304.
[36] Effect of crystallographic anisotropy on phase transformation and tribological properties of Ni-rich NiTi shape memory alloy fabricated by LPBF [J]. Optics and Laser Technology, 2023, 157: 108731.
[37] 扫描速度对激光粉末床熔融NiTi合金耐腐蚀性能的影响[J]. 机械工程学报, 2024.
[38] 受螳螂虾虾螯启发的仿生螺旋结构力学特性[J]. 吉林大学学报(工学版), 2023, .
[39] 基于增材制造的着陆器仿生缓冲结构的力学特性[J]. 吉林大学学报(工学版), 2023.
4.2 书籍编译情况
[1] 于征磊等. 智能产线数字化建模与工艺仿真:基于Process Simulate [M], 2022.11, 北京: 化学工业出版社, ISBN 978-7-122-42383-2.
[2] 于征磊等. 数字化工厂建模与物流仿真——基于Plant Simulation [M], 2022, 北京: 化学工业出版社, ISBN 978-7-122-4702-1.
4.3 授权发明专利情况
[1] 于征磊等. 一种基于响应面法的钛合金超疏水表面设计及制备方法. ZL 2024 1 1472599.9, 授权发明专利, 授权时间: 2025.1.24.
[2] 于征磊等. 一种仿生减振减阻防结冰机翼蒙皮及其制备方法. ZL 2024 1 1508059.1, 授权发明专利, 授权时间: 2025.1.24.
[3] 于征磊等. 具有电流及工作压力监测功能的电阻电焊钳, ZL202410825260.6, 授权发明专利, 授权时间: 2024.9.14.
[4] 于征磊等. 便于多种车型焊装用的悬挂式点焊装置, ZL2024 1 0411960.0, 授权发明专利, 授权时间: 2024.6.7.
[5] 于征磊等. 一种具备能耗监控功能的电阻点焊钳, ZL2024 1 0410735.5, 授权发明专利, 授权时间: 2024.6.7.
[6] 于征磊等. 基于Levenberg-Mar改进算法的激光选取熔化NiTi相变温度预测方法, ZL 2021 1 1207385.5, 授权发明专利, 授权时间: 2024.4.30.
[7] 于征磊等. 一种基于形状记忆合金航空座椅吸能装置,ZL 2021 1 1041001.7, 授权发明专利, 授权时间: 2024.3.22.
[8] 于征磊等. 具有防止热扩散功能的液冷电池模组, 2023110691861, 授权发明专利, 授权时间: 2024.1.19.
[9] 于征磊等. 一种基于智能数字孪生的汽车焊装输送线用自动焊接设备, 2023 1 1489299.7, 授权发明专利, 授权时间: 2024.1.9.
[10] 于征磊等. 三元锂电池包, ZL 2023 1 1432655.1, 授权发明专利, 授权时间: 2023.12.26.
[11] 于征磊等. 一种可形状回复的减振潜艇耐压外壳制备方法, 202311369739.5, 授权发明专利, 授权时间: 2023.12.06.
[12] 于征磊等. 一种车身焊装输送线中具有自动调整方向的夹持装置, 202311301903.9, 权发明专利, 授权时间: 2023.11.14.
[13] 于征磊等. 基于数字孪生的焊装生产线用防滑耐磨的自动定位工装, 202311315669.5, 权发明专利, 授权时间: 2023.11.16.
[14] 于征磊等. 一种高效减振及碰撞多级缓冲的动力电池包, 202311314778.5, 授权发明专利, 授权时间: 2023.12.15.
[15] 于征磊等. 一种增材制造用形状记忆高熵合金粉末及其制备方法. 202311082466.6, 授权发明专利, 授权时间: 2023.10.16.
[16] 于征磊等. 一种医用植入异质金属复合结构的制备方法. 202311049592.1, 授权发明专利, 授权时间: 2023.10.16.
[17] 于征磊等. 一种增材制造多组元形状记忆高熵合金及其制备方法. 202311104369.2, 授权发明专利, 授权时间: 2023.10.17.
[18] 于征磊等. 一种仿生抗冲击轻量化新能源汽车电池包. 202310768876.X, 授权发明专利, 授权时间: 2023.8.14.
[19] 于征磊等. 基于仿生结构的三元锂电池的阻燃壳体, 202310796364.4, 授权发明专利, 授权时间: 2023.8.8.
[20] 于征磊等. 仿蜂窝结构的防撞击三元锂电池外壳, 202310833751.0, 授权发明专利, 授权时间: 2023.8.15.
[21] Zhenglei Yu; Bo Liu; Yiwen Zhang; Long Ma; Lidong Gu; Lei Dong,; Shouxin Ruan; Xin Li; Zezhou Xu; Yunting Guo; Linsen Song; Jingru Liu; Zhouyuan Liu. CLAMPING DEVICE HAVING AUTOMATIC DIRECTION ADJUSTMENT FUNCTION IN VEHICLE BODY WELDING CONVEYING LINE, 美国发明专利, US 12,202,680 B1, Jan. 21, 2025.
[22] Zhenglei Yu; Renlong Xin; Haojie Chi; Delong Gao; Zezhou Xu; Yunting Guo; Long Ma; Yanan Yang; Pengwei Sha; Jincheng Wang; Xin Zhao; He Liu. METHOD FOR PREPARING A HETEROGENEOUS METAL COMPOSITE STRUCTURE FOR MEDICAL IMPLANTATION, 美国发明专利, US 12,245,944 B1, Mar. 11, 2025.
[23] Zhenglei Yu, ANTI-SKID AND WEAR-RESISTANT AUTOMATIC POSITIONING TOOL FOR WELDING PRODUCTION LINE BASED ON DIGITAL TWINNING. 美国发明专利, 2025.
[24] Zhenglei Yu, Lixin Chen, Yiwen Zhang, Zezhou Xu, Shan Jiang, Long Ma, Lei Dong, Delong Gao, Linsen Song, Shouxin Ruan, Xin Li, Lidong Gu, Jing Jiao, Hongbo Liu, SUSPENDED-TYPE SPOT WELDING DEVICE CONVENIENT FOR WELDING AND ASSEMBLING OF VARIOUS VEHICLE MODELS, 美国发明专利, US 12,330,229 B1, Jun. 17, 2025.
4.4 科研获奖
[1] 吉林省技术发明奖,一等奖,2023,排名第三。
[2] 中国有色金属工业科学技术奖,一等奖,2024,排名第四。
[3] 中国产学研合作创新成果奖,优秀奖,2023,排名第四。
[4] 吉林省科学技术奖,二等奖,2018,吉林省科学技术奖励委员会,排名第五。
[5] 吉林省自然科学学术成果奖,二等奖,2015,吉林省科协和吉林省人力资源和社会保障厅,排名第一。
[6] 吉林省优秀博士论文,2015,吉林省学位委员会。
五、团队实验条件
团队现拥有金属增材制造装备5台/套,包括EOS M280、EOS M100、铂利特S210、雷石LATEC LAM-150V送粉式多材料金属打印机以及自行开发的金属电弧熔丝增材制造装备,以及水凝胶、PEEK异质多材料仿生梯度打印设备。
相关仪器设备包括:多物理场原位力学测试系统、DSC、XPS、高速摄像机、英国三维运动捕捉仪及三维空间系统、美国Hysitron纳米力学测试系统、美国Quesant扫描探针原子力显微镜、德国Zeiss扫描电子显微镜、美国微观摩擦学试验机、英国三维激光扫描逆向工程系统、飞秒和皮秒激光加工系统、布鲁克摩擦磨损试验机、化学分析和力学性能测试设备、各种体视和金相显微镜等试验装备,以及精密磨床、数控车床、电火花加工等精密减材加工设备。
六、学生培养
[1] 指导博士生青年托举人才2人,博新计划资助1人、博新计划B类资助1人,博士后站前资助1人。
[2] 指导研究生获国家学业奖学金2人,获学业奖学金16人次,获优秀研究生13人次;
[3] 指导研究生获博士研究生交叉学科资助项目4项,吉林大学青年师生交叉学科项目4项;
[4] 指导研究生参加中国大学生机械工程创新创意大赛智能制造赛,三等奖2项;
[5] 指导本科生参加第七届国际互联网+大学生创新创业大赛,国家级银奖2项,省级金奖2项;
[6] 指导本科生参加iCAN大学生创新创业大赛,省级二等奖1项;
[7] 指导本科生参加中国智能机器人大赛,一等奖2项,二等奖1项;
[8] 指导本科生参加全国大学生数学建模竞赛,二、三等奖各1项;
[9] 指导本科生参加全美数学竞赛,H奖2项(国家级二等奖);
[10] 指导本科生参加大创10组:国家级4组,省级3组,校级3组;
[11] 指导本科毕业设计16人:院优6人。